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Abstract

We have studied the implementation of the Deutsch-Josza quantum algorithm in a superconducting charge-qubit quantum

computer. Different from previous studies, we have used the inductance coupled system of You et al. The detailed pulse sequences have
been designed for the four possible functions in a 2-qubit system. The result is generalized to an arbitrary n-qubit system. This scheme will

be useful for practical implementation of the algorithm.
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In recent years, quantum information and quan-
tum computation have developed rapidly[l'ﬂ. Quan-
tum computer is the computer which works according
to the principle of quantum mechanics. Shor algo-
rithm!®! and Grover algorithmm have shown the
great potential of quantum computer in factoring large
numbers and searching in an unsorted database. The
Deutsch-Jozsa algorithm(D-] algorithm)m is a bench-
mark algorithm that demonstrates the power of quan-
tum computation. D-] algorithm has been experimen-
tally implemented in a 2-qubit nuclear magnetic reso-
671 in 5-qubit and 7-qubit
[8'9], and in an ion trap

nance quantum computer
NMR quantum computer
quantum computer[w}.

Recently, much attention has been paid to im-
plementing quantum computer utilizing solid-state de-
vices such as quantum dots!!12} and superconducting
Josephson junctions[lﬂ. Solid-state quantum comput-
er has a superiority in scalability. The quantum com-
puter based on superconducting Josephson effect has
developed rapidly both in theoretical and experimental

(13718) 1t is interesting to implement quantum

studies
algorithms in such a quantum computing scheme. An
implementing scheme for the D-] algorithm on super-
conducting quantum computer has already been pro-
posed by Siewert et al. %! to implement the modified
D-] algorithm[m] . In their proposal, they adopted the
capacitance coupling scheme in which the inter-qubit

coupling has the form ngz[zl] to implement 2-qubit

gates. In addition to coupling two qubits using capac-
itance, one can couple the two qubits using induc-
tance! '), In this work, we will study the implemen-
tation of D-] algorithm in the inductance coupled two
charge-qubit system. The result will be generalized
into systems with arbitrary n qubits.

1 The flux and voltage controlled supercon-
ducting quantum computer with Josephson
charge qubits

A simple Josephson charge qubit is depicted in
Fig. 1(a). It consists of a small superconducting box
with n excess Cooper-pairs, connected to a supercon-
ducting electrode by a tunnel junction with capaci-
tance C; and coupling energy E;. The supercon-
ducting box is biased by a gate voltage through a gate
capacitor C,. There are two energy scales, the Coop-
er-pair charging energy E.= (2¢)%/2( C,+Cy), and
the Josephson coupling energy E;j, which is propor-
tional to the critical current of the Josephson Junec-

tion.

Choosing suitable materials and parameters satis-
fying that the superconducting energy gap A>E_ and
E>Ej, then at low temperature, k5T <K Ej(where
ky; is the Boltzmann constant), there are only two

charge states, » =0 and n =1, playing a role. All
the other states having much higher energy are thus
ignored. In this case, the Hamiltonian of the system
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: o1
can be written as a spin-7 system

2
__ 1 1
H - 2Bzo'z 281011 (1)

where

B: = Ec(l _27'1 )1

g

B, = E|,
C,V
T e @

Here, n, is the offset charge which can be controlled
by gate voltage. The charge states n =0 and n =1

correspond to the spin basis [0) = | 4 ) = and

1
0

1D =1¥)= ((1) , respectively.

The simple single Josephson junction is difficult
to operate because the tunnelling amplitude, the x
component of the field B, in Hamiltonian Eq. (1), is
constant. Thus, in manipulating the system, it is not
only necessary to control the operating time, but also
to keep track of the time 7y from the very beginning
of manipulating. To solve this difficulty, people have
replaced the single Josephson junction by two junc-
tions placed in a loop configuration as shown in Fig. 1
(b)), This forms a dc SQUID. This dc SQUID is
biased by an external magnetic flux @,, and the tun-
nelling amplitude, or the effective Josephson coupling
energy, is controllable by changing the external flux.
The explicit expression is

B, = 2E &) 3)
. = jCOS th;DO , (

where @¢ = %is the flux quantum. Consequently,
the SQUID-controlled qubit is described by the fol-
lowing Hamiltonian

H == JB(Vo - 7B.(@)o,  (4)
with field components B, = E. (1 — 2n,) and

o,
B,(®,) = 2Ejcosn D
0

the gate voltage and the external flux.

controlled independently by

(a) (b

[ ——— 1
0

T | |

The simplest Josephson charge qubit design formed by a

Fig. 1.
superconducting single-charge box (a), and the Josephson charge
qubit with controlled tunnelling amplitude (b) .

A scalable charge-qubit quantum computer
scheme is proposed by You et al. in Ref.[16]. There
are also other ways to couple different charge
qubits!'™ 15 1) The scheme in Ref. [16] realizes the
coupling of different qubits via a common supercon-
ducting inductance L. This scheme is more efficient
in performing two-qubit conditionale gates, because it
requires just one two-qubit operation to perform con-
ditional gates. We will work in this superconducting
quantum computer scheme. The n-qubit circuit is
shown in Fig. 2. In this model, the superconducting
box is coupled by two symmetric de SQUIDs, and
each SQUID is pierced by a magnetic flux ®@,; where
the subscript refers to the i-th qubit. The two charge
levels in the superconducting box serve as the two
states of a qubit. The Hamiltonian of one qubit

reads! !¢

1

H=-1B.(V)s. - 7B.(0,, @)a,. (5)
Here,
BV = B 20y = E[1- 8Ys),
B, (®,,d.)= 4E?cos ng cos T(%J
o, B,
. (1— %ﬂzsin2 T\Z%)),

where 7 = — ©?LE;(®,)/®y. If C,V,/e =1 and
@,/®,=1/2, H=0. This state may be called an im-
mune state of the qubit because the qubit does not
change its state. There is no time evolution for this
qubit. If these conditions are not satisfied, the qubit
will leave from the immune state and go through a
time evolution. Thus, by changing the parameters
@, (the magnetic flux), and V (the gated voltage),
one can address a specific qubit and make it go
through a designated time evolution. This fulfils a
single qubit addressing and operation for quantum
computation.

d) [
‘¢ |<P“|Eg C

e

[c]
D,
C gl f9
) . an in
| L L1
Vgl ] Vgl] Vg“ ]‘ H—l

Schematic diagram of n-qubit circuit. The supercon-

In

Fig. 2.
ducting box is coupled by two symmetric dc SQUIDs. These two dc
SQUIDs are identical and all Josephon junctions in one qubit have

coupling energy E?i and capacitance Cy; . Each SQUID in one qubit
is pierced by a magnetic flux @, but the direction of the flux is op-

posite.
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The two-qubit gate is easy to implement in this
scheme!'®. The inter-qubit interaction is introduced
by the common inductance L through the electromag-

netic energy in the inductance 1/2LI%, where I =
N

> 1, is the total electric current through the induc-
i=1
tance. I; = — nE;,; (®,;)/® is the contribution to

the current from the i-qubit. When @_,/®, =1/2,
the contribution from the i-th qubit is zero. Hence,
if all qubits are in their immune state condition,
namely @.;/®y=1/2 and C,Vy/e =1, there is no
interaction among the qubits. To realize a twa-qubit
gate, one needs to depart from this immune state. By

e

& .
setting @, = 70 and V= C for all qubits except

gk
k=1 and j, the i-th qubit and j-th qubit can be cou-
pled together through the inductance, and the Hamil-
tonian for the whole computer contains only contribu-
tions from these two qubits. After some derivation, it

can be written as'!®]

1
H = Z [— EBik)( ng)a(zk)

k=1.;
- %Bik)(érk’ @e)o-i-k):l + Einta(zi)aij)’ (6)
where
LAY 0o ‘?Dn-)
E .. =-1L @(Z)E‘Ii Ej, cos| « o,
o) o)
. Ty 2 e
cos! & o, sin Tc@O . (7)

Here, E?i is the Josephson coupling energy of the ith
qubit, @,; is the magnetic flux threading the dc
SQUID of the ith qubit, and &, is the magnetic {lux
threading the superconducting inductance L .

The basic gate operations are one bit operation
and the two-qubit controlled phase gate. A quantum

system evolves according to U (z) = e” H/% | Initial-
ly, setting ®@,; = %@0 and V, = %(z’ =1,2) so

gi
that the Hamiltonian of the system is H =0 and no
time evolution occurs. It can implement logic gates by
switching certain magnetic flux @,; and/or gate volt-
age V, away from the initial values for certain peri-

ods of times. The universal set of one-bit gates

U.(a)= € and U, (p) = e®: where o =

B.(V )t B (9., 9.)7
LA VT _ B \D, BT .
27 and 8= )% , can be designed by

choosing B, (&,, ®,) =0, B.(V,) = B,#0 and
B.(V,)=0,B,(®,, &)= B,70 in the one bhit

Hamiltonian Eq. (5) for a given time 7, respective-
ly. Any one-bit operation can be derived with these
two one-bit gates. For example, the Hadamard trans-

formation H and the one bit rotation U, %) = engy
- _ [ £) ( Ed

are given by H=e “ U, 4 U, 4 U, 4 and
x| _ e, _ (_1) L) (L) i

U_V( 4 € U, 4 U, 4 U, RS

_.x
spectivelyt’®). Here, the phase factor e 2 corre-
sponds to a total energy shift of the Hamiltonian.

When the fluxes @,; and @,; are switched away
from the initial value @y/2 for a given period time ,
the Hamiltonian of the two qubits becomes H(z) =
-~ %Bii)a(;) - %Bij)aij) + Eimaii) ij). If the pa-

1 1

rameters are suitably chosen so that 5 Bii) =3 B ij)
nh .
=E = - 470 2@ controlled-phase-gate is reached,
if —iH(:)z/% if[l—a:)—dij)Jro'“)o'i]) .
U =e e = e * , which
does not change the 2-qubit states | +)|+),
[+)] =) and | =) | +), but transforms | —) | —)

to = =Y] =), whereli>:/%<lo>i 11)). The

controlled-phase-shift gate for the basis states
[0)10), 10y {1), [1)10) and |1) 1) can be ob-

tained by combining U, with Hadamard transforma-
tion, U, = HY g UPH(i) H"Y. Then the con-

trolled-not gate can be derived,
_ () s (G| T
Uepr = U7 — 4 ) u,u; (

)[161
4

Cnot

2 Implementation of the D-J algorithm in
superconducting charge-qubit quantum com-
puter

The D-] algorithm determines whether a func-
Consider that
there are n-bit inputs x, the function f(z) is called
constant if f(x)=0 or 1 for all inputs x; and called
balanced function if f(x) =0 for exactly half the in-
puts and f(x) =1 for the other half. To determine
whether the function f(x) is constant or balanced on
a deterministic classical computer, in the worst case,

tion f(x) is constant or balanced®!.

2" '+ 1 function calls are required: although half of
the inputs have been checked and the value of func-
tion f(x) =0 has been obtained, it cannot be con-
cluded with certainty that the function f(x) is con-
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stant and one additional call of the function is still
necessary. In contrast, a quantum computer can cer-
tainly determine the property of f(x) using just one
function call using the D-] algorithm.

To realize an n qubit D-] algorithm in a quantum
computer, one needs n +1 qubits. The extra qubit is
used as an ancillary qubit to affect the tested func-
tion. Note that this tested function f(x) is either a
constant function or a balanced function. If the func-
tion 1s different from these two types of functions,
then the D-] algorithm will fail. In a quantum com-
puter, a function call is realized by a sequence of uni-
tary gate operations, denoted by U,. In the begin-
ning, the state of n + 1 qubits register is prepared in
the following superposition state

2"-1
1
71/22 l .I>
2770
The action of Uy is
1

Uf:(ﬁg | x>)/%(0> —-11))

Y L v,y 1 _
—’(2,,/212:%( 1) 'I>)[2“0> D).
(8)

1

J2

(10 =1 1)).

The state of the first n qubits,
i 27— o
271/22(_1) I z)

will be changed to
IEFEPILE

after applying the Hadamard gate to the first =
qubits. Through simple calculation, it can be con-
cluded that if the function f(x) is constant, then the
state of the first n qubits would be [00---0) ; howev-
er, if the function f{x) is balanced, then the proba-
bility of being |00-:-0) state would be 0. Therefore,
whether the function is constant or balanced can be
determined by measuring the state of the first =
qubits. If the state of the first n qubits is |00+--0),
then the function is constant, otherwise the function
is balanced.

In order to implement the D-J algorithm, the
most important step is to design the operator Uy.
There are two constant functions for n-qubit D-] al-
gorithm, one is () =0 and the other is f(x)=1.
It is easy to design operators Uy corresponding to
these two functions. The operator U, corresponding
to () =0 is the identity operator. The operator Uy

(the super-

corresponding to f(x) =1 is U, ( %

script n denotes the n-th qubit) . However, there are
many balanced functions for a n-qubit system, and it
is more difficult to design the operators U, corre-
sponding to these balanced functions. We will analyze
the balanced functions in detail 1.

For 1-qubit D-] algorithm, there are two bal-
anced functions, namely: f1(0)=0, f,(1)=1, and
f2(0) =1, f,(1)=0. These two functions can be

implemented by operators U, = Ulcznot and Up =

12 2
UCnot U

x

™

) ) , where the numbers in the super-

scripts 1 and 2 denote the control qubit and the target
qubit, respectively.

For a 2-qubit D-] algorithm, there are six bal-
anced functions. For instance, fi1(x) =0 for x =0,
1 and f1(x) =1 for r =2,3. f, is a balanced func-
tion, and it can be implemented through the follow-
ing gate operations in the superconducting computer,
Up= Ulcim. Similarly, the other five balanced func-
tions can be implemented by the following operators:

5|
2 b

23 13 3
[Jf2 = UCnot’ Uf3 = UCnotUz

_ 23 3| | _ 13 23
UM -~ UCnot UI 2 ) ’ Uf5 - UCnot UCnot’
_ 23 13 31 T
Uf6 - U(‘notUCnotU‘r 2/

respectively. These operators can be constructed di-
rectly by managing the magnetic flux and the gating
voltage described in the previous section.

For 3-qubit D-] algorithm, there are 70 balanced
functions. These 70 functions can be implemented by

. . . 14
combining the following basic operators, Ug.,»

l\),and

24 34 14 4
UCnot’ UCnot’ UCnot U 2

i 24 4
z E ’ UCnot U.r
vl )
no x 2

For 4-qubit D-] algorithm, there are 12870 bal-

anced functions. Though the number of balanced

functions is so big, they all can be implemented by

. . 15 25 35
combining the basics operators, U Ucnorr U

Cnot ?
45 15 ;5 25 .5 0 35 ;.5 T
UCnot’ UCnotUI 2 ] ’ UCnotU_r( 2 ’ UChOlUI 2 ’
45 ;.5 T
and Ucnot U.r 2
n
It can be proved that there are -1 balanced

functions in an n-gubit system. When the number »n
increases, the number of balanced functions increases
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binomially in the exponential of »n. However, each of
the balanced function can be implemented by the basic

In+1 an + 1 ln+1l n+1{ T
Crot > » UCnot ’ UCnot U.r ( 2

] ]

operators, U

and U

nnt 1l n+l| TC
Cnot Uz ( 2

There are five steps to perform in order to imple-
ment the » qubit D-] algorithm in a superconducting

guantum computer:

D Prepare the initial state |00---1) where the
ancillary qubit is originally prepared in 1.

@ Apply the Hadamard gate on the »n + 1
qubits.

@ The tested function f(x) is translated in a
quantum circuit gate, which is an operator Uy on the
n + 1 qubits. These quantum circuit can be imple-
mented by the basic gate operators in the supercon-
ducting quantum computer. In this charge-qubit su-
perconducting quantum computer, the basic gates are
one qubit gates U,(a) and U, (a), and the two-
qubit controlled NOT gate,

A
4

) T )

UCnot = ij - 4 ) UPUyJ

@ Apply the Hadamard gate on the first =
qubit.

® Measure the states of the first n qubits. If
the result is that all the qubits are in the 0 state, then
f{x) is a constant function. Otherwise it is a bal-

anced function.
3 Error analysis

Experimentally, the charging energy E. and
Josephson coupling energy E; cannot be measured
precisely, there are always some errors AE. and AE;
in E. and E}, respectively. The final state certainly
will not be the correct state but with some probabili-
ties because of the existence of the errors. In 2-qubit
D-J algorithm, the operator Uy; is the most compli-
cated one. Therefore, in order to see how these errors
influence the final results of the D-] algorithm, we

can calculate the probability of state

A0 = 1) (0 - (1) |
2

n the final state | ¥) =

For simplicity, we consider the four following
cases in 1-qubit D-J algorithm: the first one is that
there are errors in charging energy of the two qubits

while the Josephson coupling energy is constant; the
second one is that there are errors in Josephson cou-
pling energy of the two qubits while the charging en-
ergy is constant; the third one is that there are errors
in charging energy of the first qubit and in Josephson
coupling energy of the second qubit; the last one is
that there are errors in Josephson coupling energy of
the first qubit and in charging energy of the second
qubit. The probability distributions with §; and &,
are shown in Figs. (3)—(6). &, and &, have differ-
ent meanings in Figs. (3)—(6). The vertical coordi-
nate P is the probability of success of D-J algorithm.
In Fig.3, 8, =AE,/E_ and 8, =AE,/E ,; in Fig.
4, 6, = AEp/E}; and &, = AE;,/Ey; in Fig. S,
81 =AE,/E, and 8, = AE,/E}; in Fig. 6, 8, =
AE,/E, and 8= AE ,/E ,.

Fig. 3. The probability distribution with the errors in charging

energy of two qubits.

Fig. 4. The probability distribution with the errors in Josephson
coupling energy of two qubits.

FAS. o 1UE pPiopdullily disiribuilion witn the errors n charging
energy of the first qubit and Josephson coupling energy of the sec-
ond qubit.
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Fig. 6. The probability distribution with the etrors in Josephson cou-
pling energy of the first qubits and charging energy of the second qubit.

From these four figures we can see that the error
in the second qubit, &, = AE,/E, influences the
probability severely while 8, = A E_,/E_, influences
the probability slightly, and the situation is reversed
in the first qubit. The influence of these errors is not
symmetrical with the first qubit and the second qubit,
since the operations on the first qubit and second
qubit in operator Uj; are not equal . In Fig. 5, the
probability decreases to a small value at larger | &, |
and |8, ], indicating that the result of D-]J algorithm
cannot be very good in the presence of larger AE
and AE,. Therefore, the error AEy, should be very
small in order to achieve good results of D-]J algo-
rithm.

4 Conclusion

We have studied the implementation of the D-]
algorithm wusing flux-voltage-controlled supercon-
ducting charge qubit quantum computer. This result
complements the case where the coupling between
qubits is realized by capacitance. The detailed operat-
ing sequences have been designed. Results have
shown that some of the functions involve very little
inter-qubit gates, such as the two constant functions.
Though these functions are also part of the D-J quan-
tum algorithm, they are not good to test the practical
performance of the quantum computer. Some bal-
anced functions involve more complicated inter-qubit
gate operations and are more suitable for testing quan-
tum computer performance. By error analysis, we
have found that the error of charging energy in con-
trolled qubit and the error of Josephson coupling ener-
gy in ancillary qubit influence the final result more
severely.

In our work, the qubits are coupled by a super-
conducting inductance L. There is another coupling
mode called capacitance coupling. These two coupling
mode have been experimentally realized!'® %!, Com-
pared with inductance coupling, the capacitance cou-
pling is easy to be realized when the number of qubits

is very little. However, when the number of qubits is
large, the additional operation and decoherence will
be the biggest trouble of capacitance coupling model,
and the advantage of inductance coupled supercon-
ducting quantum computer will become apparent.
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